
          

 

 

Technical Network Validation 
Using Open-shift 

August 2018

AUTHOR: 
Neha Gupta 

MENTORS: 
Alexandre Lossent 
Alberto Rodriguez Peon 



TN validation using Openshift

CERN openlab Report  2018

 

EXECUTIVE SUMMARY 
!  
The interest in using containers to package applications is constantly growing in the software 
development community, especially with new technologies such as Kubernetes, Open-shift 
being adopted more frequently as well. This project also based on modularising the currently 
adopted monolithic structure and building different micro-services out of it, one such micro-
service that defined the goal for this project was building a technical network validating 
admission controller. Modularising the application increased resilience, provided robust 
monitoring and no single point of failures. 

The aim of this project is to build a technical network validating admission controller using 
Golang deployed in Open-shift that will ensure only whitelisted applications that are visible to the 
technical network, where the whitelisted applications are assumed to be provided be the security 
team. 

!   2

 



TN validation using Openshift

CERN openlab Report  2018

TABLE OF CONTENTS 
!  

Background              04 
 
Openshift 

Overview 
What Are the Layers? 
What Is the OpenShift Architecture? 
Docker Registry                04 

 
Docker 

Overview 
Docker Registry             05 

 
AdmissionController                        07 

Overview 
Admission Web-hooks 

Validating Admission Web-hooks 

 
Reasons for switching to micro-services              08 
 
Implementation  

Overview 
Logic behind the Controller 
Deployment             10 

 
Conclusion and Future Work             12 
 
References              13 

!   3

 



TN validation using Openshift

CERN openlab Report  2018

Background 
!  
2.1  Openshift 

2.1.1  Overview 

 OpenShift is a layered system designed to expose underlying Docker and Kubernetes 
concepts as accurately as possible, with a focus on easy composition of applications by a 
developer. For example, install Ruby, push code, and add MySQL. More flexibility of 
configuration is exposed after creation in all aspects of the model. The concept of an application 
as a separate object is removed in favour of more flexible composition of "services", allowing two 
web containers to reuse a database or expose a database directly to the edge of the network. 

2.1.2  What Are the Layers? 

 Docker provides the abstraction for packaging and creating Linux-based, lightweight 
containers. Kubernetes provides the cluster management and orchestrates Docker containers 
on multiple hosts. OpenShift adds: 

 1. Source code management, builds, and deployments for developers 

 2. Managing and promoting images at scale as they flow through your system 

 3. Application management at scale 

 4. Team and user tracking for organising a large developer organisation 

2.1.3  What Is the OpenShift Architecture? 

 OpenShift has a micro-services-based architecture of smaller, decoupled units that work 
together. It can run on top of (or alongside) a Kubernetes cluster, with data about the objects 
stored in etcd, a reliable clustered key-value store. Those services are broken down by function 
REST APIs, which expose each of the core objects. 

 Controllers, which read those APIs, apply changes to other objects, and report status or 
write back to the object. One make calls to the REST API to change the state of the system. 
Controllers use the REST API to read the user’s desired state, and then try to bring the other 
parts of the system into sync. For example, when a user requests a build they create a "build" 
object. The build controller sees that a new build has been created, and runs a process on the 
cluster to perform that build. When the build completes, the controller updates the build object 
via the REST API and the user sees that their build is complete. 

 The controller pattern means that much of the functionality in OpenShift is extensible. 
The way that builds are run and launched can be customised independently of how images are 
managed, or how deployments happen. The controllers are performing the "business logic" of 
the system, taking user actions and transforming them into reality. By customising those 
controllers or replacing them with your own logic, different behaviours can be implemented. 
From a system administration perspective, this also means the API can be used to script 
common administrative actions on a repeating schedule. Those scripts are also controllers that 

!   4

 



TN validation using Openshift

CERN openlab Report  2018

watch for changes and take action. OpenShift makes the ability to customise the cluster in this 
way a first-class behaviour. 

 To make this possible, these controllers leverage a reliable stream of changes to the 
system to sync their view of the system with what users are doing. This event stream pushes 
changes from etcd to the REST API and then to the controllers as soon as changes occur, so 
changes can ripple out through the system very quickly and efficiently.  

 However, since failures can occur at any time, the controllers must also be able to get the 
latest state of the system at startup, and confirm that everything is in the right state. This 
resynchronisation is important, because it means that even if something goes wrong, then the 
operator can restart the affected components, and the system double checks everything before 
continuing. The system should eventually converge to the user’s intent, since the controllers can 
always bring the system into sync. 

2.2  Docker 
2.2.1  Overview 

 The basic units of OpenShift applications are called containers. Many application 
instances can be running in containers on a single host without visibility into each others' 
processes, files, network, and so on. Typically, each container provides a single service (often 
called a "micro-service"), such as a web server or a database, though containers can be used 
for arbitrary workloads. OpenShift and Kubernetes add the ability to orchestrate Docker 
containers across multi-host installations. 

 Though we do not directly interact with Docker tools when using OpenShift, 
understanding Docker’s capabilities and terminology is important for understanding its role in 
OpenShift and how this project’s controller applications functions inside of containers.  

!   5

 



TN validation using Openshift

CERN openlab Report  2018

 Docker containers are based on Docker images. A Docker image is a binary that includes 
all of the requirements for running a single Docker container, as well as metadata describing its 
needs and capabilities. We can think of it as a packaging technology. Docker containers only 
have access to resources defined in the image, unless we give the container additional access 
when creating it. By deploying the same image in multiple containers across multiple hosts and 
load balancing between them, OpenShift can provide redundancy and horizontal scaling for a 
service packaged into an image. 

 We can use Docker directly to build images, but OpenShift also supplies builders that 
assist with creating an image by adding your code or configuration to existing images. Since 
applications develop over time, a single image name can actually refer to many different 
versions of the "same" image. Each different image is referred to uniquely by its hash. 

2.2.2  Docker Registry 

  A Docker registry is a service for storing and retrieving Docker images. A registry 
contains a collection of one or more Docker image repositories. Each image repository contains 
one or more tagged images. Docker provides its own registry, the Docker Hub, but we can also 
use private or third-party registries. OpenShift can also supply its own internal registry for 
managing custom Docker images. 

 The relationship between containers, images, and registries is depicted in the following 
diagram: 

 

!   6

 



TN validation using Openshift

CERN openlab Report  2018

2.3  AdmissionController  
2.3.1  Overview 

  Admission web-hooks call web-hook servers to either mutate pods upon creation, such 
as to inject labels, or to validate specific aspects of the pod configuration during the admission 
process. 

 Admission web-hooks intercept requests to the master API prior to the persistence of a 
resource, but after the request is authenticated and authorised. 

2.3.2  Admission Web-hooks 

 In OpenShift Container Platform we can use admission web-hook objects that call web-
hook servers during the API admission chain. There are two types of admission web-hook 
objects we can configure: 

 1. Mutating admission web-hooks allow for the use of mutating web-hooks to modify   
 resource content before it is persisted. 

 2. Validating admission web-hooks allow for the use of validating web-hooks to enforce  
 custom admission policies. 

 Configuring the web-hooks and external web-hook servers is beyond the scope of this 
report. However, the web-hooks must adhere to an interface in order to work properly with 
OpenShift Container Platform. 

 When an object is instantiated, OpenShift Container Platform makes an API call to admit 
the object. During the admission process, a mutating admission controller can invoke web-hooks 
to perform tasks, such as injecting affinity labels. At the end of the admissions process, a 
validating admission controller can invoke web-hooks to make sure the object is configured 
properly, such as verifying affinity labels. If the validation passes, OpenShift Container Platform 
schedules the object as configured. 

 When the API request comes in, the mutating or validating admission controller uses the 
list of external web-hooks in the configuration and calls them in parallel.  

 1. If all of the web-hooks approve the request, the admission chain continues. 

 2. If any of the web-hooks deny the request, the admission request is denied, and the   
 reason for doing so is based on the first web-hook denial reason. 
 If more than one web-hook denies the admission request, only the first will be returned to 
 the user. 

 3. If there is an error encountered when calling a web-hook, that request is ignored and is 
 be used to approve/deny the admission request. 

 The communication between the admission controller and the web-hook server needs to 
be secured using TLS. Generate a CA certificate and use the certificate to sign the server 
certificate used by the web-hook server. The PEM-formatted CA certificate is supplied to the 
admission controller using a mechanism, such as Service Serving Certificate Secrets. 

!   7

 



TN validation using Openshift

CERN openlab Report  2018

 The following diagram illustrates this process with two admission web-hooks that call 
multiple web-hooks. 

2.3.3  Validating Admission Web-hooks 

 Validating admission web-hooks are invoked during the validation phase of the admission 
process. This phase allows the enforcement of invariants on particular API resources to ensure 
that the resource does not change again. The Pod Node Selector is also an example of a 
validation admission, by ensuring that all nodeSelector fields are constrained by the node 
selector restrictions on the project. 

Reasons for switching to micro-services 

 A variant of service-oriented architecture (SOA), micro-services is an architectural style in 
which applications are decomposed into loosely coupled services. With fine-grained services 
and lightweight protocols, micro-services offers increased modularity, making applications easier 
to develop, test, deploy, and, more importantly, change and maintain.  

 With micro-services, the code is broken into independent services that run as separate 
processes. Output from one service is used as an input to another in an orchestration of 
independent, communicating services. Microservices is especially useful for businesses that do 
not have a pre-set idea of the array of devices its applications will support. 

1. Increased resilience 
 With micro-services, the entire application is decentralised and decoupled into services 
that act as separate entities. Unlike the monolithic architecture wherein a failure in the code 
affects more than one service or function, there is minimal impact of a failure using micro-
services. Even when several systems are brought down for maintenance, the users won’t notice 
it. 

2. Improved scalability 
 Scalability is the key aspect of micro-services. Because each service is a separate 
component, we can scale up a single function or service without having to scale the entire 

!   8

 



TN validation using Openshift

CERN openlab Report  2018

application. Business-critical services can be deployed on multiple servers for increased 
availability and performance without impacting the performance of other services. 

3. The ability to use the right tool for the right task 
 With micro-services, we don’t have to get tied up with a single vendor. Instead, we have 
the flexibility to use the right tool for the right task. Each service can use its own language, 
framework ( in this project we are using Golang ), or ancillary services while still being able to 
communicate easily with the other services in your application. 

4. Continuous delivery 
 Because micro-services works with loosely coupled services, we don’t need to rewrite 
the entire codebase to add or modify a feature. We make changes only to a specific service. By 
developing applications in smaller increments that are independently testable and deployable, 
you can get your application and services to market quicker. 

 Unlike monolithic applications, in which dedicated teams work on discrete functions such 
as UI, database, server-side logic, and technological layers, micro-services uses cross-
functional teams to handle the entire life cycle of an application using a continuous delivery 
model. When developers, operations, and testing teams work simultaneously on a single 
service, testing and debugging becomes easy and instant. With this approach of incremental 
development, code is continuously developed, tested and deployed, and we can use code from 
existing libraries instead of reinventing the wheel. 

7. Robust monitoring is a must 
 Because each service relies on its own language, platform, and APIs, and we will be 
orchestrating different entities of the micro-services project, we need robust monitoring to 
effectively monitor and manage the entire infrastructure, because if we don’t know when a 
service fails or a machine goes down, it may be impossible to track down issues when they 
arise. 

There can be some downsides as well with micro-services, like,  testing isn’t straightforward. 
Each service has its own dependencies, some direct, others transitive. As features are added, 
new dependencies will pop up. Keeping tabs on all this quickly becomes impractical. Plus, as  
the number of services increases, so too does the complexity. Whether it’s database errors, 
network latency, caching issues, or service unavailability, the micro-services architecture better 
be able to handle a reasonable level of faults. So, resiliency testing and fault injection are a 
must. 

 Also, we need to design with failure in mind. Designing for failure is essential. We should 
be prepared to handle multiple failure issues, such as system downtime, slow service and 
unexpected responses. Here, load balancing is important, but having a plan B is another 
important option. When a failure arises, the troubled service should still run in a degraded 
functionality without crashing the entire system. 

!   9

 



TN validation using Openshift

CERN openlab Report  2018

Implementation 
!  

 The go controller takes care of accepting and dropping the change in annotations of any 
Open-shift application depending upon the whitelist that is allowed to be exposed to CERN 
technical network. The basic architecture of the network looks like the following: 

Logic behind the Controller 

!   10

 



TN validation using Openshift

CERN openlab Report  2018

1. TN : Technical Network 

2. Open-shift’s conventions on standard Open-shift route annotations are 
followed, so the following spellings in annotation/label values are 
equivalent: Internet, internet, INTERNET. 

3. Similarly, True/true/TRUE are equal. 

Deployment  

 To get started spin up a local Open-shift cluster and login as an admin. Make sure to 
enable the   ValidatingAdmissionWebhook in the open-shift cluster configuration and then deploy 
the web-hook that is invoked each time a  there is a create or update in the annotations of any 
service running the open shift cluster in the CERN technical network.  
 Create a new Project, say test and login using the authentication token in local open shift 
cluster which was spin up and create a deployment and a service. After the deployment and 
service are rolling, create the ClusterRoleBinding role and a service account. 

 Note that if the AdmissionController is not working, there might be a case that it’s not 
enabled in the open-shift cluster configuration, so you can enable it by adding the following code 
and restart the service and check again. 

admissionConfig: 
  pluginConfig: 
        ValidatingAdmissionWebhook: 
            configuration: { 
   kind: DefaultAdmissionConfig, apiVersion: v1,   
   disable: false 
   } 
  

!   11

 



TN validation using Openshift

CERN openlab Report  2018

Conclusion and Future Work 
!  

 This project was a success in achieving the milestone. We now have a go controller that 
we can deploy on Open-shift clusters that will take care of accepting and dropping the change in 
annotations of any Open-shift application depending upon the whitelist that is allowed to be 
exposed to CERN technical network. There is still some work to be done on the controller for 
example, it can be integrated with the continuous deployment and integration to reduce the 
manual interventions, thus lesser scope of errors. 

!   12

 



TN validation using Openshift

CERN openlab Report  2018

References 
!  

 The source repository is present at https://gitlab.cern.ch/paas-tools/paas-infra/
Va l i d a t i n g A d m i s s i o n C o n t r o l l e r . g i t o r h t t p s : / / g i t h u b . c o m / n e h a g u p /
ValidatingAdmissionController.git  

  Openshift Development kit https://docs.okd.io/latest/architecture/core_concepts/  

Dynamic Admission Control https://kubernetes.io/docs/reference/access-authn-
authz/extensible-admission-controllers/  

Gitlab CI/CD https://docs.gitlab.com/ee/ci/  

!   13

 

https://gitlab.cern.ch/paas-tools/paas-infra/ValidatingAdmissionController.git
https://gitlab.cern.ch/paas-tools/paas-infra/ValidatingAdmissionController.git
https://gitlab.cern.ch/paas-tools/paas-infra/ValidatingAdmissionController.git
https://github.com/nehagup/ValidatingAdmissionController.git
https://github.com/nehagup/ValidatingAdmissionController.git
https://docs.okd.io/latest/architecture/core_concepts/
https://kubernetes.io/docs/reference/access-authn-authz/extensible-admission-controllers/
https://kubernetes.io/docs/reference/access-authn-authz/extensible-admission-controllers/
https://kubernetes.io/docs/reference/access-authn-authz/extensible-admission-controllers/
https://docs.gitlab.com/ee/ci/

